MSE 6010 Principles of Functional Materials School of Materials Science and Engineering Georgia Institute of Technology #### **Fall Semester** | | _ ************************************* | | | |---|--|--|--| | Course Objective | To introduce fundamental principles essential to function including band structures, electronic defectsproperties, and transport of charge, mass, and energy in solids; electrical across a wide range of frequencies; and the chemical, then electrical, and mechanical interactions in solids. It also confection that the electrical characterization techniques. | nd the polarization rmal, | | | Instructor Backup Instructor Lecture Office Phone e-mail Office Hours | Meilin Liu Xueyu Hu Monday Wednesday 11:00 – 12:15 pm J. E. Love 299 Room 258 Erskine Love Building 404-894-6114 meilin.liu@mse.gatech.edu M W 1:30–2:30 PM or by appointment | | | | Teaching assistant
Office Hours
e-mail | Nikhil Govindarajan (MoSE 3271) Tu Fri 10-11:00 AM, 3 rd Floor Atrium MoSE (901 Atlantic Dr. NW) ngovindarajan8@gatech.edu | | | | Prerequisite | Graduate standing in MSE and basic knowledge of crystal structures of materials | | | | Homework | Homework will be assigned periodically and collected (but not graded) to assess understanding. Solutions will be posted after the homework is collected. | | | | Exams/Assessment | Exam 1 September 30, 11:00 - 12:20 pm (80 minutes) Exam 2 November 6, 11:00 - 12:20 pm (80 minutes) Exam 3 December 6, 11:20 - 1:00 pm (100 minutes) Total | 100 points
100 points
100 points
300 points | | | Grading Basis | Scale >90% (>270 points) A guaranteed >80% (>240 points) B guaranteed >70% (>210 points) C guaranteed >60% (>180 points) D guaranteed | | | # Learning Objectives: Upon completion of this course, students will be able to: - 1. Understand band structure and electronic properties of materials - 2. Gain familiarity with the transport of charge, mass, and energy in materials under various conditions (e.g., chemical diffusion, electrical and thermal conduction) - 3. Understand the mechanisms of electrical polarization, with a focus on interfacial polarization in material systems - 4. Become familiar with several experimental techniques for measuring material properties, including impedance spectroscopy. # Academic Integrity Students are reminded of their obligations under the Georgia Tech Academic Honor Code and Student Code of Conduct, available at www.honor.gatech.edu. Academic dishonesty will not be tolerated, including cheating, lying about course matters, plagiarism, or helping others commit a violation of the Honor Code. ## Learning Accommodations For students with documented disabilities, we will make classroom accommodations in accordance with the ADAPTS office (http://www.adapts.gatech.edu). However, this must be arranged in advance. # Electronic Devices Silence cell phones during class. A calculator (not one on an internet-connected device) is allowed during the exam, but you should not need it much. # Course Type Expectation Most classes will be delivered in person in the classroom. However, there may be a few online lectures in case I will have to attend one or two review meetings. Recordings of these lectures will be posted on Canvas. #### References - 1. Electrons in Solids, An Introductory Survey, 3rd Edition, R. Bube, 1992. - 2. Physical Ceramics, Y. M. Chiang, D. Birnie, and W. D. Kinggery, Wiley, 1997. - 3. B.N. Figgis & M.A. Hitchman, Ligand Field Theory and Its Applications; Wiley-VCH, 2000. - 4. Jean-noel Chazalviel, Coulomb Screening by Mobile Charges Applications to Materials Science, Chemistry, and Biology, Birkhauser, 1999. - 5. S. O. Kasap, Principles of Electronic Materials & Devices, McGraw-Hill, 3nd Edition, 2007 - 6. Kwan Chi Kao, Dielectric Phenomena in Solids, Elsevier, 2004 - 7. T. Ikeda, Fundamentals of piezoelectricity, Oxford, 1990 - * Lecture notes ### Class Schedule (MSE 6010) | Lecture # | Date | Topics | Ref | |--------------|-------------------------|---|-------------| | | | Electronic properties of solids | *,1,2,3 | | 4 weeks | Aug 19
to
Sept 16 | Introduction Physical principles Electrons in Solids Crystal Field Theory Band structure of ceramic materials Band conduction Hopping conduction, Ionic energy bands Temperature Effect Charged Surfaces & Space Charge Region, Complex Defects Exam 1: Electronic properties of solids | | | | | Transport of Mass, Charge, and Energy | *,2,4 | | 4 weeks | Sept 18
to
Oct 21 | Irreversible Thermodynamics Phenomenological transport Equations Definition of transport properties/coefficients Electrical conduction, The 4-probe measurements, Hall effect Chemical diffusion; Nernst-Planck-Poisson system Relaxation of a single kind of species: Diff. and dielectric relaxation Relaxation of two kinds of species - Ambipolar diffusion Mobility of minority carriers Haynes-Shockley Experiment Microscopic transport mechanisms | | | | | Thermoelectricity | *, 5 | | 1 weeks | Oct 23
to
Oct 28 | Thermal conduction, Thermoelectricity, Thermoelectric power Peltier heat, Thomason heat Thermoelectric cooler Thermoelectric generator Exam 2: Transport and Thermoelectricity | | | | | Dielectric Properties | *,6,7 | | 4 weeks | Oct 30
to
Dec 2 | Concept of electrical polarization Electrical polarization in a static field Electrical polarization in an alternating field Polarization mechanisms Resonance spectra, Relaxation spectra Concept of impedance spectroscopy Impedance functions Equivalent circuit approximation Wagner-Maxwell model Interfacial polarization Piezoelectricity, Ferroelectricity, and pyroelectricity Ferroelectric materials and Applications | | | | Dec 6 | Exam 3: Dielectric Properties (11:20 - 1:00) | | | * Lecture no | | | | ^{*} Lecture notes